27 research outputs found

    Pediatric Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations

    Get PDF
    This 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations (CoSTR) for pediatric life support is based on the most extensive evidence evaluation ever performed by the Pediatric Life Support Task Force. Three types of evidence evaluation were used in this review: systematic reviews, scoping reviews, and evidence updates. Per agreement with the evidence evaluation recommendations of the International Liaison Committee on Resuscitation, only systematic reviews could result in a new or revised treatment recommendation. Systematic reviews performed for this 2020 CoSTR for pediatric life support included the topics of sequencing of airway-breaths-compressions versus compressions-airway-breaths in the delivery of pediatric basic life support, the initial timing and dose intervals for epinephrine administration during resuscitation, and the targets for oxygen and carbon dioxide levels in pediatric patients after return of spontaneous circulation. The most controversial topics included the initial timing and dose intervals of epinephrine administration (new treatment recommendations were made) and the administration of fluid for infants and children with septic shock (this latter topic was evaluated by evidence update). All evidence reviews identified the paucity of pediatric data and the need for more research involving resuscitation of infants and children

    Pediatric Life Support: 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations

    Get PDF
    This 2020 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations (CoSTR) for pediatric life support is based on the most extensive evidence evaluation ever performed by the Pediatric Life Support Task Force. Three types of evidence evaluation were used in this review: systematic reviews, scoping reviews, and evidence updates. Per agreement with the evidence evaluation recommendations of the International Liaison Committee on Resuscitation, only systematic reviews could result in a new or revised treatment recommendation. Systematic reviews performed for this 2020 CoSTR for pediatric life support included the topics of sequencing of airway-breaths-compressions versus compressions-airway-breaths in the delivery of pediatric basic life support, the initial timing and dose intervals for epinephrine administration during resuscitation, and the targets for oxygen and carbon dioxide levels in pediatric patients after return of spontaneous circulation. The most controversial topics included the initial timing and dose intervals of epinephrine administration (new treatment recommendations were made) and the administration of fluid for infants and children with septic shock (this latter topic was evaluated by evidence update). All evidence reviews identified the paucity of pediatric data and the need for more research involving resuscitation of infants and children

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Designing a Pediatric Severe Sepsis Screening Tool

    No full text
    We sought to create a screening tool with improved predictive value for pediatric severe sepsis and septic shock that can be incorporated into the electronic medical record and actively screen all patients arriving at a pediatric Emergency Department (ED). Gold standard severe sepsis cases were identified using a combination of coded discharge diagnosis and physician chart review from 7,402 children who visited a pediatric ED over two months. The tool’s identification of severe sepsis was initially based on International Consensus Conference on Pediatric Sepsis (ICCPS) parameters that were refined by an iterative, virtual process that allowed us to propose successive changes in sepsis detection parameters in order to optimize the tool’s predictive value based on receiver operating curve (ROC) characteristics. Age-specific normal and abnormal values for heart rate (HR) and respiratory rate (RR) were empirically derived from 143,603 children seen in a second pediatric ED over three years. Univariate analyses were performed for each measure in the tool to assess its association with severe sepsis and to characterize it as an early or late indicator of severe sepsis. A split-sample was used to validate the final, optimized tool. The final tool incorporated age-specific thresholds for abnormal HR and RR and employed a linear temperature correction for each category. The final tool’s positive predictive value was 48.7%, a significant, nearly three-fold improvement over the original ICCPS tool. False positive Systemic Inflammatory Response Syndrome (SIRS) identifications were nearly six-fold lower. </p

    Pediatric Vital Sign Distribution Derived From a Multi-Centered Emergency Department Database

    No full text
    BackgroundWe hypothesized that current vital sign thresholds used in pediatric emergency department (ED) screening tools do not reflect observed vital signs in this population. We analyzed a large multi-centered database to develop heart rate (HR) and respiratory rate centile rankings and z-scores that could be incorporated into electronic health record ED screening tools and we compared our derived centiles to previously published centiles and Pediatric Advanced Life Support (PALS) vital sign thresholds.MethodsInitial HR and respiratory rate data entered into the Cerner™ electronic health record at 169 participating hospitals’ ED over 5 years (2009 through 2013) as part of routine care were analyzed. Analysis was restricted to non-admitted children (0 to &lt;18 years). Centile curves and z-scores were developed using generalized additive models for location, scale, and shape. A split-sample validation using two-thirds of the sample was compared with the remaining one-third. Centile values were compared with results from previous studies and guidelines.ResultsHR and RR centiles and z-scores were determined from ~1.2 million records. Empirical 95th centiles for HR and respiratory rate were higher than previously published results and both deviated from PALS guideline recommendations.ConclusionHeart and respiratory rate centiles derived from a large real-world non-hospitalized ED pediatric population can inform the modification of electronic and paper-based screening tools to stratify children by the degree of deviation from normal for age rather than dichotomizing children into groups having “normal” versus “abnormal” vital signs. Furthermore, these centiles also may be useful in paper-based screening tools and bedside alarm limits for children in areas other than the ED and may establish improved alarm limits for bedside monitors

    Data_Sheet_1.xlsx

    No full text
    Background<p>We hypothesized that current vital sign thresholds used in pediatric emergency department (ED) screening tools do not reflect observed vital signs in this population. We analyzed a large multi-centered database to develop heart rate (HR) and respiratory rate centile rankings and z-scores that could be incorporated into electronic health record ED screening tools and we compared our derived centiles to previously published centiles and Pediatric Advanced Life Support (PALS) vital sign thresholds.</p>Methods<p>Initial HR and respiratory rate data entered into the Cerner™ electronic health record at 169 participating hospitals’ ED over 5 years (2009 through 2013) as part of routine care were analyzed. Analysis was restricted to non-admitted children (0 to <18 years). Centile curves and z-scores were developed using generalized additive models for location, scale, and shape. A split-sample validation using two-thirds of the sample was compared with the remaining one-third. Centile values were compared with results from previous studies and guidelines.</p>Results<p>HR and RR centiles and z-scores were determined from ~1.2 million records. Empirical 95th centiles for HR and respiratory rate were higher than previously published results and both deviated from PALS guideline recommendations.</p>Conclusion<p>Heart and respiratory rate centiles derived from a large real-world non-hospitalized ED pediatric population can inform the modification of electronic and paper-based screening tools to stratify children by the degree of deviation from normal for age rather than dichotomizing children into groups having “normal” versus “abnormal” vital signs. Furthermore, these centiles also may be useful in paper-based screening tools and bedside alarm limits for children in areas other than the ED and may establish improved alarm limits for bedside monitors.</p
    corecore